Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.654
Filtrar
1.
J Agric Food Chem ; 72(15): 8606-8617, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581395

RESUMO

Peptide IRW is the first food-derived angiotensin-converting enzyme 2 (ACE2) upregulator. This study aimed to investigate the pharmacokinetic characteristics of IRW and identify the metabolites contributing to its antihypertensive activity in spontaneously hypertensive rats (SHRs). Rats were administered 100 mg of IRW/kg of the body weight via an intragastric or intravenous route. The bioavailability (F %) was determined to be 11.7%, and the half-lives were 7.9 ± 0.5 and 28.5 ± 6.8 min for gavage and injection, respectively. Interestingly, significant blood pressure reduction was not observed until 1.5 h post oral administration, or 2 h post injection, indicating that the peptide's metabolites are likely responsible for the blood pressure-lowering activity. Time-course metabolomics revealed a significant increase in the level of kynurenine, a tryptophan metabolite, in blood after IRW administration. Kynurenine increased the level of ACE2 in cells. Oral administration of tryptophan (W), but not dipeptide IR, lowered the blood pressure and upregulated aortic ACE2 in SHRs. Our study supports the key role of tryptophan and its metabolite, kynurenine, in IRW's blood pressure-lowering effects.


Assuntos
Enzima de Conversão de Angiotensina 2 , Hipertensão , Ratos , Animais , Ratos Endogâmicos SHR , Enzima de Conversão de Angiotensina 2/metabolismo , Disponibilidade Biológica , Cinurenina/metabolismo , Cinurenina/farmacologia , Triptofano/metabolismo , Peptídeos/metabolismo , Anti-Hipertensivos/farmacologia , Pressão Sanguínea , Hipertensão/metabolismo , Peptidil Dipeptidase A/metabolismo
2.
J Neuroinflammation ; 21(1): 101, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632579

RESUMO

BACKGROUND: Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS: The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS: The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS: Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.


Assuntos
Hipertensão , Microbiota , Humanos , Ratos , Animais , Ratos Endogâmicos SHR , Doenças Neuroinflamatórias , Hipertensão/metabolismo , Pressão Sanguínea , Bulbo/metabolismo , Acetatos/farmacologia
3.
Biomolecules ; 14(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540753

RESUMO

BACKGROUND: Studies have shown that the chronic use of cannabis is associated with a decrease in blood pressure. Our previous studies prove that activating the cannabinoid type 2 (CB2) receptor in the brain can effectively reduce blood pressure in spontaneously hypertensive rats; however, the exact mechanism has not been clarified. The objective of this study is to demonstrate that activation of microglial CB2 receptors can effectively reduce the levels of TNF-α, IL-1ß, and IL-6 in the paraventricular nucleus (PVN) through inhibiting aerobic glycolysis, thereby relieving hypertension. METHODS: AngiotensinII (AngII) was administered to BV2 cells and C57 mice to induce hypertension and the release of proinflammatory cytokines. The mRNA and protein expression of the CB2 receptor, TNF-α, IL-1ß, IL-6, and the PFK and LDHa enzymes were detected using RT-qPCR and Western blotting. The Seahorse XF Energy Metabolism Analyzer was used to measure the oxidative phosphorylation and aerobic glycolysis metabolic pathways in BV2 cells. The long-term effects of injecting JWH133, a selective CB2 receptor agonist, intraperitoneally on blood pressure were ascertained. ELISA was used to measure norepinephrine and lactic acid levels while immunofluorescence labeling was used to locate the CB2 receptor and c-Fos. By injecting pAAV-F4/80-GFP-mir30shRNA (AAV2-r-CB2shRNA) into the lateral cerebral ventricle, the CB2 receptor in microglia was specifically knocked down. RESULTS: Activation of CB2 receptors by the agonist JWH133 suppressed TNF-α, IL-1ß, and IL-6 by inhibiting PFK and LDHa enzymes involved in glycolysis, as well as lactic acid accumulation, along with a reduction in glycoPER levels (marks of aerobic glycolysis) in AngII-treated BV2 cells. In AngII-treated mice, the administration of JWH133 specifically activated CB2 receptors on microglia, resulting in decreased expression levels of PFK, LDHa, TNF-α, IL-1ß, and IL-6, subsequently leading to a decrease in c-Fos protein expression within PVN neurons as well as reduced norepinephrine levels in plasma, ultimately contributing to blood pressure reduction. CONCLUSION: The results suggest that activation of the microglia CB2 receptor decreases the neuroinflammation to relieve hypertension; the underlying mechanism is related to inhibiting aerobic glycolysis of microglia.


Assuntos
Canabinoides , Hipertensão , Ratos , Camundongos , Animais , Doenças Neuroinflamatórias , Fator de Necrose Tumoral alfa/metabolismo , Microglia/metabolismo , Interleucina-6/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Ratos Endogâmicos SHR , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Glicólise , Ácido Láctico/metabolismo , Norepinefrina/metabolismo
4.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542273

RESUMO

The identification of pathological links among metabolic disorders, kidney ailments, and cardiovascular conditions has given rise to the concept of cardiovascular-kidney-metabolic (CKM) syndrome. Emerging prenatal risk factors seem to increase the likelihood of CKM syndrome across an individual's lifespan. The renin-angiotensin system (RAS) plays a crucial role in maternal-fetal health and maintaining homeostasis in cardiovascular, metabolic, and kidney functions. This review consolidates current preclinical evidence detailing how dysregulation of the RAS during pregnancy and lactation leads to CKM characteristics in offspring, elucidating the underlying mechanisms. The multi-organ effects of RAS, influencing fetal programming and triggering CKM traits in offspring, suggest it as a promising reprogramming strategy. Additionally, we present an overview of interventions targeting the RAS to prevent CKM traits. This comprehensive review of the potential role of the RAS in the early-life programming of CKM syndrome aims to expedite the clinical translation process, ultimately enhancing outcomes in cardiovascular-kidney-metabolic health.


Assuntos
Sistema Cardiovascular , Hipertensão , Síndrome Metabólica , Gravidez , Feminino , Humanos , Sistema Renina-Angiotensina , Síndrome Metabólica/metabolismo , Rim/metabolismo , Sistema Cardiovascular/metabolismo , Coração , Hipertensão/metabolismo
5.
J Clin Hypertens (Greenwich) ; 26(4): 431-440, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523455

RESUMO

We measured the levels of High-Mobility Group Box 1 (HMGB1), Receptor for Advanced Glycation Endproducts (RAGE), T Helper 17 cells (Th17), Regulatory T cells (Treg), and related cytokines in the peripheral blood of patients with severe preeclampsia (SPE) complicated with acute heart failure (AHF) to explore the expression changes in these indicators. In total, 96 patients with SPE admitted to Gansu Provincial Maternity and Child-care Hospital between June 2020 and June 2022 were included in the study. The patients were divided into SPE+AHF (40 patients) and SPE (56 patients) groups based on whether they suffered from AHF. Additionally, 56 healthy pregnant women who either received prenatal examinations or were admitted to our hospital for delivery during the same period were selected as the healthy control group. An enzyme-linked immunosorbent assay was performed to detect the expression levels of HMGB1, RAGE, interleukin (IL)-17, IL-6, transforming growth factor ß (TGF-ß), IL-10, and NT-proBNP in plasma. Flow cytometry was employed to determine the percentages of Th17 and Treg cells. Compared to the healthy control group, the SPE+AHF and SPE groups had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage. Compared to the SPE group, the SPE+AHF group had higher plasma levels of HMGB1 and RAGE expression, higher Th17 percentage and Th17/Treg ratio, and lower Treg percentage (P < .05). In patients with SPE with AHF, plasma HMGB1 was positively correlated with RAGE, Th17, Th17/Treg, IL-17, and IL-6 and was negatively correlated with TGF-ß and IL-10 (P < .05). Our findings revealed that patients with SPE with AHF had elevated levels of HMGB1 and RAGE while exhibiting Th17/Treg immune imbalance, suggesting that the abnormal expression of these indicators may be involved in the pathogenesis of SPE with AHF.


Assuntos
Proteína HMGB1 , Hipertensão , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Interleucina-6 , Interleucina-10/metabolismo , Pré-Eclâmpsia/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Proteína HMGB1/metabolismo , Hipertensão/metabolismo , Citocinas , Fator de Crescimento Transformador beta/metabolismo , Linfócitos T Reguladores/metabolismo
6.
Aging (Albany NY) ; 16(6): 5065-5076, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38526331

RESUMO

Vascular cognitive impairment (VCI) is claimed as the second most common type of dementia after Alzheimer's disease (AD), in which hypertension is a critical inducer. Currently, hypertension-induced cognitive impairment lacks clinical treatments. Irbesartan is a long-acting angiotensin receptor antagonist with promising antihypertensive properties. Our research will focus on the potential function of Irbesartan on hypertension-induced cognitive impairment. Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats were orally dosed with normal saline or 20 mg/kg/day Irbesartan for 14 consecutive days, with 4 groups divided shown as below: WKY, Irbesartan, SHR, SHR+ Irbesartan. Firstly, the markedly increased systolic blood pressure observed in SHR rats was signally repressed by Irbesartan on Day 7 and 14 post-dosing. Moreover, notably decreased time of exploring the novel object in the object recognition task (ORT) test, elevated escape latency, and reduced time in the target quadrant in the Morris water maze (MWM) test were observed in SHR rats, which were prominently reversed by Irbesartan. Furthermore, the declined superoxide dismutase (SOD) activity, elevated malondialdehyde (MDA) level, increased cyclin-dependent kinase-5 (CDK5) activity, and enhanced protein level of p35/p25, p-Tau (pSer214)/Tau46, and brain-derived neurotrophic factor (BDNF) were memorably rescued by Irbesartan. Lastly, the activity of cAMP/cAMP response element binding protein (CREB) signaling in the hippocampus of SHR rats was markedly repressed, accompanied by an upregulation of phosphodiesterase 4B (PDE4B), which was observably rescued by Irbesartan. Collectively, Irbesartan protected against the hypertension-induced cognitive impairment in SHR rats by regulating the cAMP/CREB signaling.


Assuntos
Disfunção Cognitiva , Hipertensão , Ratos , Animais , Irbesartana/farmacologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Pressão Sanguínea/fisiologia , Compostos de Bifenilo/farmacologia , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia
7.
FASEB J ; 38(6): e23537, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38498345

RESUMO

Candesartan is a common angiotensin-II receptor-1 blocker used for patients with cardiovascular and renal diseases. Angiotensin-converting enzyme 2 (ACE2) is a negative regulator of blood pressure (BP), and also a major receptor for coronaviruses. To determine whether and how candesartan upregulates ACE2, we examined BP and ACE2 in multi-organs from male and female C57BL/6J mice treated with candesartan (1 mg/kg, i.p.) for 7 days. Relative to the vehicle, candesartan lowered BP more in males than females; ACE2 protein abundances were increased in kidneys, not lungs, hearts, aorta, liver, spleen, brain, or serum, only from males. Ace2-mRNA was similar in kidneys. Candesartan also decreased BP in normal, hypertensive, and nephrotic male rats. The renal ACE2 was increased by the drug in normal and nephrotic male rats but not spontaneously hypertensive ones. In male mouse kidneys, ACE2 was distributed at sodium-hydrogen-exchanger-3 positive proximal-convoluted-tubules; ACE2-ubiquitination was decreased by candesartan, accompanied with increased ubiquitin-specific-protease-48 (USP48). In candesartan-treated mouse renal proximal-convoluted-tubule cells, ACE2 abundances and activities were increased while ACE2-ubiquitination and colocalization with lysosomal and proteosomal markers were decreased. The silence of USP48 by siRNA caused a reduction of ACE2 in the cells. Thus, the sex-differential ACE2 upregulation by candesartan in kidney from males may be due to the decreased ACE2-ubiquitination, associated with USP48, and consequent degradation in lysosomes and proteosomes. This is a novel mechanism and may shed light on candesartan-like-drug choice in men and women prone to coronavirus infections.


Assuntos
Enzima de Conversão de Angiotensina 2 , Benzimidazóis , Compostos de Bifenilo , Hipertensão , Humanos , Feminino , Masculino , Ratos , Camundongos , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Camundongos Endogâmicos C57BL , Rim/metabolismo , Hipertensão/metabolismo , Tetrazóis/farmacologia , Ubiquitinação
8.
Nat Commun ; 15(1): 2359, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504097

RESUMO

Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.


Assuntos
Hipertensão , Proteoma , Humanos , Pressão Sanguínea/genética , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética , Multiômica , Hipertensão/metabolismo , Rim/metabolismo , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo
9.
Nature ; 628(8006): 130-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448586

RESUMO

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Metabolômica , Feminino , Humanos , Gravidez , Acetona/sangue , Acetona/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Colestase Intra-Hepática/sangue , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Estudos de Coortes , Estudo de Associação Genômica Ampla/métodos , Hipertensão/sangue , Hipertensão/genética , Hipertensão/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectroscopia de Ressonância Magnética , Análise da Randomização Mendeliana , Redes e Vias Metabólicas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo
10.
Biochem Biophys Res Commun ; 707: 149617, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38520942

RESUMO

Preeclampsia (PE) is characterized by hypertension, proteinuria, and fetal growth restriction during pregnancy, suggesting that the preeclamptic intrauterine environment may affect the growth and health of the offspring. This study aimed to how maternal hypertension affects male offspring growth, focusing on lipid metabolism and blood pressure in mice. Female mice were infused with angiotensin II (Ang II) on gestational day 12. Dysregulation and accumulation of lipid were observed in the placenta of Ang II-induced maternal hypertensive dams, associating with fetal growth restriction. Ang II-offspring showed lower birth weight than in the control-offspring. Isolated and differentiated adipocyte from neonatal mice of Ang II-dams showed higher Pparγ mRNA expression compared with the control group. Lower body weight tendency had continued in Ang II-offspring during long period, body weight of Ang II-offspring caught up the control-offspring at 16 weeks of age. The adipose tissue of Ang II-offspring in adult also showed higher Pparγ mRNA expression with the accumulation of neutrophils and inflammatory monocytes than in those control. In addition, Ang II-offspring had higher basal blood pressure and higher sensitivity to hypertensive stimuli than in the control-offspring. Taken together, maternal hypertension induced by Ang II changes placental function, causing a lower birth weight. These changes in the intrauterine environment may affect adipocyte function and blood pressure of offspring after growth.


Assuntos
Hipertensão , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Masculino , Animais , Camundongos , Pressão Sanguínea/fisiologia , Retardo do Crescimento Fetal/etiologia , Peso ao Nascer , PPAR gama/genética , PPAR gama/metabolismo , Placenta/metabolismo , Sistema Renina-Angiotensina/fisiologia , Hipertensão/metabolismo , Angiotensina II/metabolismo , Pré-Eclâmpsia/metabolismo , Tecido Adiposo/metabolismo , RNA Mensageiro/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 44(4): 826-842, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38328937

RESUMO

BACKGROUND: Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure (HF) with preserved ejection fraction. At this point, there are no proven treatments for CMD. METHODS: We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98, K117, K161, and K162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve CMD and prevent the progression of hypertensive cardiac hypertrophy and HF. Wild-type and p534KR mice were subjected to pressure overload by transverse aortic constriction to induce cardiac hypertrophy and HF. RESULTS: Echocardiography measurements revealed improved cardiac function together with a reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and Gluts (glucose transporters), as well as the level of fructose-2,6-biphosphate; increased PFK-1 (phosphofructokinase 1) activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α (hypoxia-inducible factor-1α) and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice, as well as in p534KR mice after transverse aortic constriction. In vitro, p534KR significantly improved endothelial cell glycolytic function and mitochondrial respiration and enhanced endothelial cell proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved coronary flow reserve and rescued cardiac dysfunction in SIRT3 (sirtuin 3) knockout mice. CONCLUSIONS: Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling and may provide a promising approach to improve hypertension-induced CMD and to prevent the transition of cardiac hypertrophy to HF.


Assuntos
Insuficiência Cardíaca , Hipertensão , Isquemia Miocárdica , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Cardiomegalia/metabolismo , Miocárdio/metabolismo , Isquemia Miocárdica/metabolismo , Camundongos Knockout , Hipertensão/metabolismo
12.
Pflugers Arch ; 476(3): 365-377, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308122

RESUMO

To assess the influence of physical training on neuronal activation and hypothalamic expression of vasopressin and oxytocin in spontaneously hypertensive rats (SHR), untrained and trained normotensive rats and SHR were submitted to running until fatigue while internal body and tail temperatures were recorded. Hypothalamic c-Fos expression was evaluated in thermoregulatory centers such as the median preoptic nucleus (MnPO), medial preoptic nucleus (mPOA), paraventricular nucleus of the hypothalamus (PVN), and supraoptic nucleus (SON). The PVN and the SON were also investigated for vasopressin and oxytocin expressions. Although exercise training improved the workload performed by the animals, it was reduced in SHR and followed by increased internal body temperature due to tail vasodilation deficit. Physical training enhanced c-Fos expression in the MnPO, mPOA, and PVN of both strains, and these responses were attenuated in SHR. Vasopressin immunoreactivity in the PVN was also increased by physical training to a lesser extent in SHR. The already-reduced oxytocin expression in the PVN of SHR was increased in response to physical training. Within the SON, neuronal activation and the expressions of vasopressin and oxytocin were reduced by hypertension and unaffected by physical training. The data indicate that physical training counterbalances in part the negative effect of hypertension on hypothalamic neuronal activation elicited by exercise, as well as on the expression of vasopressin and oxytocin. These hypertension features seem to negatively influence the workload performed by SHR due to the hyperthermia derived from the inability of physical training to improve heat dissipation through skin vasodilation.


Assuntos
Hipertensão , Corrida , Ratos , Animais , Ratos Endogâmicos SHR , Ocitocina/metabolismo , Ocitocina/farmacologia , Hipotálamo/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Vasopressinas/metabolismo , Hipertensão/metabolismo , Fadiga
13.
Food Funct ; 15(5): 2485-2496, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334682

RESUMO

Hypertension-induced kidney injury is considered a vital consequence of long-term and uncontrolled hypertension, which is commonly associated with an excessive accumulation of angiotensin II (Ang II) from hyperactivated RAS. Antihypertensive peptides have a significant effect on blood pressure regulation, but few studies have focused on the ameliorative function of antihypertensive peptides on renal injury. This study explored the effects of soybean protein-derived hydrolysate (SPH) on SHR and Ang II-induced HK-2 cells. SPH significantly attenuated blood pressure and alleviated renal pathological injury in SHRs after oral gavage administration. According to the pathological results, the kidneys of SHRs showed inflammation and SPH attenuated inflammatory cell infiltration in the kidneys of SHRs. Immunohistochemical analysis further revealed that SPH inhibited MCP-1 expression and increased Nrf2 expression in the kidneys. An in vitro HK-2 cell model demonstrated that SPH exhibited optimal activity for reducing Ang II-induced inflammatory cytokines and ROS overproduction. Mechanistically, SPH was observed to regulate MAPK/JNK and NF-κB signaling pathways. These findings indicate that potent antihypertensive SPH significantly ameliorates hypertension-induced kidney damage.


Assuntos
Hipertensão , NF-kappa B , NF-kappa B/genética , NF-kappa B/metabolismo , Anti-Hipertensivos/farmacologia , Angiotensina II/metabolismo , Soja , Rim , Transdução de Sinais , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo
14.
J Clin Invest ; 134(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38357921

RESUMO

The physiology of lipid droplets (LDs) has been most extensively characterized in adipocytes, but LDs also accumulate in endothelial cells lining blood vessels in response to changing levels of triglycerides. In recent issues of the JCI, two independent papers highlight a direct role of endothelial LDs in the genesis of hypertension and atherosclerosis in rodent models. Kim et al. demonstrated that accumulation of LDs in the endothelium leads to hypertension, impairs endothelial function, and accelerates atherosclerosis. Boutagy, Gamez-Mendez, et al. knocked out Atgl in the endothelium and confirmed triglyceride accumulation in endothelial cells that was associated with reduced NO synthesis and impaired endothelial-dependent vasodilation. These data suggest that enhancing triglyceride breakdown in the endothelium could provide a treatment target for patients with metabolic syndrome.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Hipertensão , Síndrome Metabólica , Humanos , Células Endoteliais/metabolismo , Doenças Cardiovasculares/metabolismo , Gotículas Lipídicas/metabolismo , Síndrome Metabólica/metabolismo , Triglicerídeos/metabolismo , Endotélio/metabolismo , Hipertensão/metabolismo , Aterosclerose/metabolismo
15.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338717

RESUMO

Hypertension is known to be a multifactorial disease associated with abnormalities in neuroendocrine, metabolic, and hemodynamic systems. Poorly controlled hypertension causes more than one in eight premature deaths worldwide. Hydrochlorothiazide (HCT) and furosemide (FUR), being first-line drugs in the treatment of hypertension, are among others the most frequently prescribed drugs in the world. Currently, many pharmacoepidemiological data associate the use of these diuretics with an increased risk of adverse phototoxic reactions that may induce the development of melanoma and non-melanoma skin cancers. In this study, the cytotoxic and phototoxic potential of HCT and FUR against skin cells varied by melanin pigment content was assessed for the first time. The results showed that both drugs reduced the number of metabolically active normal skin cells in a dose-dependent manner. UVA irradiation significantly increased the cytotoxicity of HCT towards fibroblasts by approximately 40% and melanocytes by almost 20% compared to unirradiated cells. In the case of skin cells exposed to FUR and UVA radiation, an increase in cytotoxicity by approximately 30% for fibroblasts and 10% for melanocytes was observed. Simultaneous exposure of melanocytes and fibroblasts to HCT or FUR and UVAR caused a decrease in cell viability, and number, which was confirmed by microscopic assessment of morphology. The phototoxic effect of HCT and FUR was associated with the disturbance of redox homeostasis confirming the oxidative stress as a mechanism of phototoxic reaction. UVA-irradiated drugs increased the generation of ROS by 10-150%, and oxidized intracellular thiols. A reduction in mitochondrial potential of almost 80% in melanocytes exposed to HCT and UVAR and 60% in fibroblasts was found due to oxidative stress occurrence. In addition, HCT and FUR have been shown to disrupt the cell cycle of normal skin cells. Finally, it can be concluded that HCT is the drug with a stronger phototoxic effect, and fibroblasts turn out to be more sensitive cells to the phototoxic effect of tested drugs.


Assuntos
Dermatite Fototóxica , Hipertensão , Humanos , Furosemida/farmacologia , Hidroclorotiazida/efeitos adversos , Melanócitos/metabolismo , Dermatite Fototóxica/etiologia , Dermatite Fototóxica/metabolismo , Pele , Raios Ultravioleta/efeitos adversos , Fármacos Fotossensibilizantes/farmacologia , Hipertensão/metabolismo , Fibroblastos
16.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339214

RESUMO

Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) using the electron paramagnetic resonance spin-labeling method. Donor health history information (diabetes, smoker, hypertension, radiation treatment), sex, and race were included in the data analysis. The right eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 1, NC: 2), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Similarly, left eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 2, NC: 3), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Analysis of α-crystallin binding to male and female eye lens CM and NM revealed that the percentage of membrane surface occupied (MSO) by α-crystallin increases with increasing grade of CC and NC. The binding of α-crystallin resulted in decreased mobility, increased order, and increased hydrophobicity on the membrane surface in male and female eye lens CM and NM. CM mobility decreased with an increase in cataracts for both males and females, whereas the male lens NM mobility showed no significant change, while female lens NM showed increased mobility with an increase in cataract grade. Our data shows that a 68 yo female donor (long-term smoker, pre-diabetic, and hypertension; grade 3 CC) showed the largest MSO by α-crystallin in CM from both the left and right lens and had the most pronounced mobility changes relative to all other analyzed samples. The variation in cholesterol (Chol) content, size and amount of cholesterol bilayer domains (CBDs), and lipid composition in the CM and NM with age and cataract might result in a variation of membrane surface mobility, membrane surface hydrophobicity, and the interactions of α-crystallin at the surface of each CM and NM. These findings provide insight into the effect of decreased Chol content and the reduced size and amount of CBDs in the cataractous CM and NM with an increased binding of α-crystallin with increased CC and NC grade, which suggests that Chol and CBDs might be a key component in maintaining lens transparency.


Assuntos
Catarata , Hipertensão , Cristalino , alfa-Cristalinas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Membrana Nuclear/metabolismo , Cristalino/metabolismo , Catarata/patologia , Colesterol/metabolismo , Hipertensão/metabolismo
17.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397106

RESUMO

Hypertension is the key contributor to pathological cardiac hypertrophy. Growing evidence indicates that glucose metabolism plays an essential role in cardiac hypertrophy. TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to regulate glucose metabolism in pressure overload-induced cardiac remodeling. In the present study, we investigated the role of TIGAR in cardiac remodeling during Angiotensin II (Ang-II)-induced hypertension. Wild-type (WT) and TIGAR knockout (KO) mice were infused with Angiotensin-II (Ang-II, 1 µg/kg/min) via mini-pump for four weeks. The blood pressure was similar between the WT and TIGAR KO mice. The Ang-II infusion resulted in a similar reduction of systolic function in both groups, as evidenced by the comparable decrease in LV ejection fraction and fractional shortening. The Ang-II infusion also increased the isovolumic relaxation time and myocardial performance index to the same extent in WT and TIGAR KO mice, suggesting the development of similar diastolic dysfunction. However, the knockout of TIGAR significantly attenuated hypertension-induced cardiac hypertrophy. This was associated with higher levels of fructose 2,6-bisphosphate, PFK-1, and Glut-4 in the TIGAR KO mice. Our present study suggests that TIGAR is involved in the control of glucose metabolism and glucose transporters by Ang-II and that knockout of TIGAR attenuates the development of maladaptive cardiac hypertrophy.


Assuntos
Angiotensina II , Proteínas Reguladoras de Apoptose , Cardiomegalia , Hipertensão , Animais , Camundongos , Angiotensina II/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomegalia/genética , Cardiomegalia/induzido quimicamente , Fibrose , Glucose/metabolismo , Glicólise , Hipertensão/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Remodelação Ventricular/fisiologia
18.
Am J Physiol Renal Physiol ; 326(4): F644-F660, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420674

RESUMO

Patients with hypertension or obesity can develop glomerular dysfunction characterized by injury and depletion of podocytes. To better understand the molecular processes involved, young mice were treated with either deoxycorticosterone acetate (DOCA) or fed a high-fat diet (HFD) to induce hypertension or obesity, respectively. The transcriptional changes associated with these phenotypes were measured by unbiased bulk mRNA sequencing of isolated podocytes from experimental models and their respective controls. Key findings were validated by immunostaining. In addition to a decrease in canonical proteins and reduced podocyte number, podocytes from both hypertensive and obese mice exhibited a sterile inflammatory phenotype characterized by increases in NLR family pyrin domain containing 3 (NLRP3) inflammasome, protein cell death-1, and Toll-like receptor pathways. Finally, although the mice were young, podocytes in both models exhibited increased expression of senescence and aging genes, including genes consistent with a senescence-associated secretory phenotype. However, there were differences between the hypertension- and obesity-associated senescence phenotypes. Both show stress-induced podocyte senescence characterized by increased p21 and p53. Moreover, in hypertensive mice, this is superimposed upon age-associated podocyte senescence characterized by increased p16 and p19. These results suggest that senescence, aging, and inflammation are critical aspects of the podocyte phenotype in experimental hypertension and obesity in mice.NEW & NOTEWORTHY Hypertension and obesity can lead to glomerular dysfunction in patients, causing podocyte injury and depletion. Here, young mice given deoxycorticosterone acetate or a high-fat diet to induce hypertension or obesity, respectively. mRNA sequencing of isolated podocytes showed transcriptional changes consistent with senescence, a senescent-associated secretory phenotype, and aging, which was confirmed by immunostaining. Ongoing studies are determining the mechanistic roles of the accelerated aging podocyte phenotype in experimental hypertension and obesity.


Assuntos
Hipertensão , Nefropatias , Podócitos , Humanos , Camundongos , Animais , Idoso , Podócitos/metabolismo , Camundongos Obesos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Fenótipo , Nefropatias/metabolismo , Obesidade/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Desoxicorticosterona , Acetatos/metabolismo , RNA Mensageiro/metabolismo
19.
J Am Heart Assoc ; 13(5): e032828, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38420846

RESUMO

BACKGROUND: Myosin phosphatase targeting subunit 2 (MYPT2) is an important subunit of cardiac MLC (myosin light chain) phosphatase, which plays a crucial role in regulating the phosphorylation of MLC to phospho-MLC (p-MLC). A recent study demonstrated mineralocorticoid receptor-related hypertension is associated with RhoA/Rho-associated kinase/MYPT1 signaling upregulation in smooth muscle cells. Our purpose is to investigate the effect of MYPT2 on cardiac function and fibrosis in mineralocorticoid receptor-related hypertension. METHODS AND RESULTS: HL-1 murine cardiomyocytes were incubated with different concentrations or durations of aldosterone. After 24-hour stimulation, aldosterone increased CTGF (connective tissue growth factor) and MYPT2 and decreased p-MLC in a dose-dependent manner. MYPT2 knockdown decreased CTGF. Cardiac-specific MYPT2-knockout (c-MYPT2-/-) mice exhibited decreased type 1 phosphatase catalytic subunit ß and increased p-MLC. A disease model of mouse was induced by subcutaneous aldosterone and 8% NaCl food for 4 weeks after uninephrectomy. Blood pressure elevation and left ventricular hypertrophy were observed in both c-MYPT2-/- and MYPT2+/+ mice, with no difference in heart weights or nuclear localization of mineralocorticoid receptor in cardiomyocytes. However, c-MYPT2-/- mice had higher ejection fraction and fractional shortening on echocardiography after aldosterone treatment. Histopathology revealed less fibrosis, reduced CTGF, and increased p-MLC in c-MYPT2-/- mice. Basal global radial strain and global longitudinal strain were higher in c-MYPT2-/- than in MYPT2+/+ mice. After aldosterone treatment, both global radial strain and global longitudinal strain remained higher in c-MYPT2-/- mice compared with MYPT2+/+ mice. CONCLUSIONS: Cardiac-specific MYPT2 knockout leads to decreased myosin light chain phosphatase and increased p-MLC. MYPT2 deletion prevented cardiac fibrosis and dysfunction in a model of mineralocorticoid receptor-associated hypertension.


Assuntos
Hipertensão , Receptores de Mineralocorticoides , Camundongos , Animais , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/farmacologia , Aldosterona/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Fibrose
20.
J Nutr Biochem ; 127: 109604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373508

RESUMO

Recent human and animal studies have delineated hypertension can develop in the earliest stage of life. A lack or excess of particular nutrients in the maternal diet may impact the expression of genes associated with BP, leading to an increased risk of hypertension in adulthood. Modulations in gene expression could be caused by epigenetic mechanisms through aberrant DNA methylation, histone modification, and microRNAs (miRNAs). Several molecular mechanisms for the developmental programming of hypertension, including oxidative stress, dysregulated nutrient-sensing signal, aberrant renin-angiotensin system, and dysbiotic gut microbiota have been associated with epigenetic programming. Conversely, maternal nutritional interventions such as amino acids, melatonin, polyphenols, resveratrol or short chain fatty acids may work as epigenetic modifiers to trigger protective epigenetic modifications and prevent offspring hypertension. We present a current perspective of maternal malnutrition that can cause fetal programming and the potential of epigenetic mechanisms lead to offspring hypertension. We also discuss the opportunities of dietary nutrients or nutraceuticals as epigenetic modifiers to counteract those adverse programming actions for hypertension prevention. The extent to which aberrant epigenetic changes can be reprogrammed or reversed by maternal dietary interventions in order to prevent human hypertension remains to be established. Continued research is necessary to evaluate the interaction between maternal malnutrition and epigenetic programming, as well as a greater focus on nutritional interventions for hypertension prevention towards their use in clinical translation.


Assuntos
Hipertensão , Desnutrição , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Desenvolvimento Fetal , Desnutrição/complicações , Desnutrição/genética , Epigênese Genética , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...